Kamis, 22 Juli 2010

prinsip pascalPengantar

Pernahkah dirimu jalan-jalan ke bengkel ? Jangan jauh-jauh ke bengkel, mungkin dirimu pernah melihat mobil mogok di jalan karena ban dalam mobil tersebut kempis alias pecah ?… nah, ketika roda mobil mengalami kerusakan maka om sopir atau kondektur harus menggantinya dengan roda yang lain. Atau kadang mobil harus digiring ke bengkel, soalnya yang nyetir pake dasi. Agar roda mobil yang rusak bisa diganti maka digunakan bantuan dongkrak hidrolis. Tahukah dirimupascal bagaimana prinsip kerja dongkrak hidrolis ? mobil yang begitu berat bisa diangkat dengan mudah. Aneh bin ajaib. Hehe… semuanya karena fisika :) . Selain itu, ketika dirimu menumpang mobil atau angkot, coba amati bagaimana kendaraan bisa direm. Kalau pingin iseng, silahkan bertanya kepada om sopir. Om, kok mobilnya bisa berhenti ya ? prinsip kerja rem bagaimana-kah ? mudah2an dirimu tidak diomelin oleh om sopir.

Ok, kembali ke laptop. Bagaimana prinsip kerja dongkrak/ lift hidrolik yang biasa digunakan untuk mengangkat mobil ? bagaimana pula prinsip kerja rem hidrolis ketika digunakan untuk mengurangi laju mobil ? mudah-mudahan dirimu kebingungan dan tidak mengetahui jawabannya… hehe… ingin tahu mengapa ? selamat belajar bersama om Pascal. Semoga setelah mempelajari pokok bahasan ini, dirimu semakin dekat di hati om Pascal serta om sopir dkk… (more…)

Pengantar

Pernahkah dirimu melihat kapal laut ? jika belum pernah melihat kapal laut secara langsung, mudah-mudahan dirimu pernah melihat kapal laut melalui televisi (Tuh ada gambar kapal di samping). Coba bayangkan. Kapal yang massanya sangat besar tidak tenggelam, sedangkan sebuah batu yang ukurannya kecil dan terasa ringan bisa tenggelam. Aneh khan ? Mengapa bisa demikian ?

Jawabannya sangat mudah jika dirimu memahami konsep pengapungan dan prinsip Archimedes. Pada kesempatan ini gurumuda ingin membimbing dirimu untuk memahami apa sesungguhnya prinsip archimedes. Selamat belajar ya… Semoga setelah mempelajari pokok bahasan ini dirimu dengan mudah menjelaskan semua persoalan berkaitan dengan prinsip archimedes, termasuk alasan mengapa kapal yang massanya besar tidak tenggelam.

Gaya Apung

Sebelum membahas prinsip Archimedes lebih jauh, gurumuda ingin mengajak dirimu untuk melakukan percobaan kecil-kecilan berikut ini. Silahkan cari sebuah batu yang ukurannya agak besar, lalu angkat batu tersebut. Apakah batu tersebut terasa berat ? nah, sekarang coba masukan batu ke dalam air (masukan batu ke dalam air laut atau air kolam atau air yang ada dalam sebuah wadah, misalnya ember). Kali ini batu diangkat dalam air. Bagaimana berat batu tersebut ? apakah batu terasa lebih ringan ketika diangkat dalam air atau ketika tidak diangkat dalam air ? agar bisa menjawab pertanyaan gurumuda dengan benar, sebaiknya dirimu melakukan percobaan tersebut terlebih dahulu. (more…)

Sebelumnya, kita sudah belajar mengenai Prinsip dan Persamaan Bernoulli. Kali ini kita akan melihat penerapan prinsip dan persamaan Bernoulli dalam kehidupan sehari-hari.

Teorema Torriceli

Salah satu penggunaan persamaan Bernoulli adalah menghitung kecepatan zat cair yang keluar dari dasar sebuah wadah (lihat gambar di bawah)

penerapan-prinsip-bernoulli-a1Kita terapkan persamaan Bernoulli pada titik 1 (permukaan wadah) dan titik 2 (permukaan lubang). Karena diameter kran/lubang pada dasar wadah jauh lebih kecil dari diameter wadah, maka kecepatan zat cair di permukaan wadah dianggap nol (v1 = 0). Permukaan wadah dan permukaan lubang/kran terbuka sehingga tekanannya sama dengan tekanan atmosfir (P1 = P2). Dengan demikian, persamaan Bernoulli untuk kasus ini adalah :

(more…)


images14Pengantar

Dirimu bisa mengendarai sepeda motor khan ? ketika kita mengendarai sepeda motor agak kencang, baju yang kita pakai biasanya mengembung ke belakang. Atau kalau dirimu belum bisa mengendarai sepeda motor, coba perhatikan ayah/ibu/teman2 yang mengendarai sepeda motor. Bagian belakang baju yang dipakai biasanya kembung ke belakang kalau sepeda motornya melaju dengan kencang. Kok bisa ya ? bukan cuma itu… kadang kalau angin bertiup kencang, pintu rumah bisa ketutup sendiri. Padahal anginnya bertiup di luar rumah, sedangkan daun pintu ada di dalam rumah.

Dirimu bingung-kah ? Tuh mah gampang, bisa dijelaskan dengan mudah asal dirimu paham prinsip om Bernoulli. Om Daniel Bernoulli (1700-1782) menemukan sebuah prinsip yang bisa digunakan untuk menjelaskan keanehan di atas. Btw, prinsip Bernoulli tu apa ? terus apa bedanya dengan persamaan Bernoulli ? Sekarang bersiap-siaplah bergulat dengan om Bernoulli… wah, Om Bernoulli ini bikin pelajaran fisika tambah banyak saja… hehe :)

(more…)

fluidaPengantar

Sebelum kita belajar tentang persamaan kontinuitas, gurumuda ingin mengajak dirimu untuk bermain dengan air. Hehe… di rumah punya kran air khan ? kalau tidak punya, bisa pinjam punya tetangga. Bilang saja, pak/bu, pinjam kran airnya ya, sebentar saja.. pliss… demi kemajuan ilmu fisika. Terus merenggek saja gpp, nanti juga diberi ;) coba dirimu buka kran air perlahan-lahan sambil memperhatikan laju air yang keluar dari mulut kran. Setelah kran tidak bisa diputar lagi, sumbat sebagian mulut kran dengan tanganmu. Sekarang bandingkan, manakah laju aliran air yang lebih besar. Ketika sebagian mulut kran disumbat atau tidak disumbat ? kalau dirimu punya slang yang biasa dipakai untuk menyiram bunga, coba alirkan air melalui slang tersebut. Nah,persamaan-kontinuitas silahkan tutup sebagian mulut selang dengan tangan atau jarimu. Semakin banyak bagian mulut selang yang ditutup, semakin deras air menyembur keluar (laju aliran air makin besar). Sebaliknya, jika mulut slang tidak ditutup, aliran air menjadi seperti semula (kurang deras). Aneh khan ? mengapa bisa demikian ? agar bisa memahami “keanehan” ini, silahkan pelajari pokok bahasan ini dengan penuh semangat. Setelah mempelajari persamaan kontinuitas, dirimu bisa menjelaskannya dengan mudah… (more…)

fluida dinamisSebelumnya kita sudah bergulat dengan Fluida Statis. Nah, kali ini kita akan bergulat dengan sahabat fluida statis, yakni Fluida Dinamis. Kalau dalam pokok bahasan Fluida Statis kita belajar mengenai fluida diam, maka dalam fluida dinamis kita akan mempelajari fluida yang bergerak. Fluida itu sendiri merupakan zat yang dapat mengalir (zat cair & gas), tapi maksud gurumuda, dalam fluida statis, kita mempelajari fluida ketika fluida tersebut sedang diam alias tidak bergerak. Sedangkan dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak.

pengantar fluida dinamis-1Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran turbulen. Aliran lurus bisa kita sebut sebagai aliran mulus, karena setiap partikel fluida yang mengalir tidak saling berpotongan. Salah satu contoh aliran laminar adalah naiknya asap dari ujung rokok yang terbakar. Mula-mula asap naik secara teratur (mulus), beberapa saat kemudian asap sudah tidak bergerak secara teratur lagi tetapi berubah menjadi aliran turbulen. Aliran turbulen ditandai dengan adanya linkaran-lingkaran kecil dan menyerupai pusaran dan kerap disebut sebagai arus eddy. Contoh lain dari aliran turbulen adalah pusaran air. Aliran turbulensi fluidaturbulen menyerap energi yang sangat besar. jadi dirimu jangan heran kalau badai datang melanda, semua yang dilalui badai tersebut hancur berantakan. Yang gurumuda maksudkan adaah badai yang membentuk pusaran alias putting beliung. Aliran turbulen ini sangat sulit dihitung. (more…)

Energi

Key Issues in Energy

Ditinjau dari perspektif fisika, setiap sistem fisik mengandung (secara alternatif, menyimpan) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing-masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem. Tidak ada cara seragam untuk memperlihatkan energi;


Satuan

SI dan satuan berhubungan

Satuan SI untuk energi dan kerja adalah joule (J), dinamakan untuk menghormati James Prescott Joule dan percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1 joule sama dengan 1 newton-meter dan, dalam istilah satuan dasar SI, 1 J sama dengan 1 kg m2 s−2.


Transfer energi

Kerja

Kerja didefinisikan sebagai "batas integral" gaya F sejauh s:

 W = \int \mathbf{F} \cdot  \mathrm{d}\mathbf{s}

Persamaan di atas mengatakan bahwa kerja (W) sama dengan integral dari dot product gaya (\mathbf{F}) di sebuah benda dan infinitesimal posisi benda (\mathbf{s}).

Jenis energi

Energi kinetik

Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.

E_k = \int \mathbf{v} \cdot  \mathrm{d}\mathbf{p}

Persamaan di atas menyatakan bahwa energi kinetik (Ek) sam dengan integral dari dot product velocity (\mathbf{v}) sebuah benda dan infinitesimal momentum benda (\mathbf{p}).

Energi potensial

Berlawanan dengan energi kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energi potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (lihat hukum Coulomb), atau gravitasi.

Energi internal

Energi internal adalah energi kinetik dihubungkan dengan gerakan molekul-molekul, dan energi potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.

Kerja, Suhu, Kalor, Sistem, Lingkungan, Energi dalam

Pengantar

Sebelum melangkah lebih jauh, alangkah baiknya jika kita pahami kembali beberapa istilah dan konsep dasar yang sering digunakan dalam pokok bahasan termodinamika. Konsep usaha alias kerja (W) sudah dikupas tuntas dalam pokok bahasan usaha dan energi. Konsep suhu dan kalor sudah diobok-obok dalam pokok bahasan Suhu dan Kalor. Konsep energi dalam (energi dalam gas ideal) sudah dioprek dalam pokok bahasan Teori Kinetik Gas. Daripada dirimu harus membuka kembali lembaran yang lama, alangkah baiknya jika kita buka saja lembaran yang baru ;) Met belajar, selamat menikmati sajian dari gurumuda… Semoga terasa lezat dan nikmat di otak… hiks2…

USAHA alias KERJA (W)

Sejauh ini kita sudah berkenalan dengan dua jenis gerakan, yakni gerak translasi (gerak lurus, gerak parabola dkk) dan gerak rotasi. Dengan demikian, kita bisa mengelompokkan kerja menjadi dua bagian, yakni kerja dalam gerak translasi dan kerja dalam gerak rotasi.

Kerja dalam gerak translasi

Dalam gerak translasi, kerja didefinisikan sebagai hasil kali antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-1

Keterangan :

W = Usaha alias kerja

F = gaya

s = perpindahan = perpindahan linear

Apabila benda yang dikenai gaya tidak mengalami perpindahan (s = 0), maka usaha alias kerja = 0. Demikian juga, apabila arah gaya tegak lurus arah perpindahan (teta = 90o. Cos 90o = 0), maka usaha alias kerja = 0.

Usaha hanya memiliki besar dan tidak mempunyai arah, karenanya termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Pelajari lagi materi vektor dan skalar kalau dirimu bingung…

Kerja dalam gerak rotasi

Dalam gerak rotasi, kerja didefinisikan sebagai hasil kali antara torsi dengan perpindahan sudut. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-2

Satuan Sistem Internasional (SI) untuk usaha alias kerja adalah newton meter (Nm). Satuan newton meter dikenal dengan julukan Joule ( 1 Joule = 1 N.m).

Hubungan antara usaha dengan energi

Usaha alias kerja berkaitan erat dengan energi. Untuk memahami hal ini, gurumuda menggunakan contoh saja… Misalnya dirimu mendorong sepeda motor yang lagi mogok… Sepeda motor bisa bergerak sejauh jarak tertentu (s) akibat adanya gaya dorong (F). Dalam hal ini, sepeda motor bisa bergerak karena dirimu melakukan usaha alias kerja pada sepeda motor tersebut. Ingat : Usaha alias kerja = W = Gaya dorong (F) x Perpindahan (s). Nah, ketika mendorong sepeda motor, dirimu kelelahan alias cape juga khan ? Hal itu disebabkan karena energi potensial kimia dalam tubuhmu berkurang. Sebagian energi potensial kimia dalam tubuhmu dipindahkan ke sepeda motor tersebut. Ketika bergerak, sepeda motor juga punya energi (energi kinetik = EK = ½ mv2. m = massa motor, v = kecepatan motor). Kita bisa mengatakan bahwa ketika dirimu melakukan usaha alias kerja pada motor, energi dalam tubuhmu dipindahkan pada sepeda motor.

Berdasarkan uraian singkat ini, bisa disimpulkan bahwa usaha alias kerja merupakan proses perpindahan energi melalui cara-cara mekanis (mekanis berhubungan dengan gerak menggerak ;) )…

SUHU (T)

Konsep suhu alias temperatur sebenarnya berawal dari rasa panas dan dingin yang dialami oleh indera peraba kita. Berdasarkan apa yang dirasakan oleh indera peraba, kita bisa mengatakan suatu benda lebih panas dari benda yang lain. Atau suatu benda lebih dingin dari benda lain. Ukuran panas atau dinginnya suatu benda ini dikenal dengan julukan suhu alias temperatur. Benda yang terasa panas biasanya memiliki suhu yang lebih tinggi. Sebaliknya, benda yang terasa dingin memiliki suhu yang lebih rendah. Semakin dingin suatu benda, semakin rendah suhunya. Sebaliknya, semakin panas suatu benda, semakin tinggi suhunya. Btw, ukuran panas atau dinginnya suatu benda yang hanya didasarkan pada sentuhan (indera peraba) ini sebenarnya tidak terlalu jelas. Panas yang dirasakan oleh setiap orang bisa saja berbeda. Demikian juga, walaupun menyentuh benda yang sama, panas yang dirasakan oleh bagian tubuh yang berbeda bisa saja berbeda.

Dalam pokok bahasan teori kinetik gas kita sudah mendefinisikan kembali makna suhu. Berdasarkan sudut pandang mikroskopis, suhu sebenarnya merupakan ukuran dari energi kinetik translasi rata-rata molekul.

Satuan Sistem Internasional untuk suhu adalah Kelvin (K).

KALOR alias PANAS (Q)

Apabila benda2 yang memiliki perbedaan suhu saling bersentuhan, akan ada aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor akan terhenti setelah kedua benda yang bersentuhan mencapai suhu yang sama. Misalnya kalau kita mencampur air panas dengan air dingin, biasanya kalor mengalir dari air panas menuju air dingin. Kalor berhenti mengalir jika campuran air panas dan air dingin telah berubah menjadi air hangat. Biasanya kalor mengalir dengan sendirinya dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor cenderung menyamakan suhu benda yang bersentuhan.

Pada abad ke-18, para ilmuwan berpikir bahwa aliran kalor merupakan gerakan suatu fluida, suatu jenis fluida yang tidak kelihatan (fluida tuh zat yang dapat mengalir. Yang termasuk fluida adalah zat cair dan zat gas. Misalnya air… air khan bisa mengalir. Atau udara… Udara juga bisa mengalir). Fluida tersebut dinamakan Caloric. Teori mengenai Caloric ini akhirnya tidak digunakan lagi karena berdasarkan hasil percobaan, keberadaan si caloric ini tidak bisa dibuktikan.

Pada abad ke-19, seorang pembuat minuman dari Inggris yang bernama James Prescott Joule (1818-1889) mempelajari cara bagaimana agar air yang ada di dalam sebuah wadah bisa dipanaskan menggunakan roda pengaduk. Berikut ini kilasan singkat percobaan yang dilakukan oleh om Jimi.

suhu-kalor-kerja-sistem-energi-dalam-3

Tataplah gambar di atas dengan penuh kelembutan. Pengaduk menempel dengan sumbu putar. Sumbu putar dihubungkan dengan beban menggunakan tali. Ketika beban jatuh, tali akan memutar sumbu sehingga pengaduk ikut2an berputar. Jika jumlah lilitan tali sedikit dan jarak jatuhnya beban kecil, maka kenaikan suhu air juga sedikit. Sebaliknya, jika lilitan tali diperbanyak dan benda jatuh lebih jauh, maka kenaikan suhu air juga lebih besar.

Ketika pengaduk berputar, pengaduk melakukan usaha alias kerja pada air. Besarnya kerja alias usaha yang dilakukan oleh pengaduk pada air sebanding dengan besarnya kerja alias usaha yang dilakukan oleh gaya gravitasi terhadap beban hingga beban jatuh sejauh h. Ingat rumus usaha alias kerja : Usaha (W) = Gaya (F) x perpindahan (s) = Gaya berat beban (w) x perpindahan beban (h) = massa beban (m) x percepatan gravitasi (g) x ketinggian (h). Ketika melakukan kerja terhadap air, pengaduk menambahkan energi pada air (ingat konsep usaha dan energi). Karenanya kita bisa mengatakan bahwa kenaikan suhu air disebabkan oleh energi yang dipindahkan dari pengaduk menuju air. Semakin besar kerja yang dilakukan, semakin banyak energi yang dipindahkan. Semakin banyak energi yang dipindahkan, semakin besar kenaikan suhu air (air semakin panas).

Berdasarkan hasil percobaannya, om Jimi Joule membuat perbandingan. Ketika ibu kesayangan hendak memanaskan air di dapur, wadah yang berisi air disentuhkan dengan nyala api yang menyembur dari kompor. Ketika nyala api dan wadah yang berisi air bersentuhan, kalor mengalir dari api (suhu tinggi) menuju air (suhu rendah). Oya, aliran kalor mampir sebentar di wadah. Karena ada aliran kalor dari api menuju air, maka air yang pada mulanya kedinginan menjadi kepanasan (suhu air meningkat).

Setelah membuat perbandingan antara meningkatnya suhu air karena bersentuhan dengan api dan meningkatnya suhu air akibat adanya kerja yang dilakukan oleh pengaduk, om Jimi menyimpulkan bahwa kalor sebenarnya merupakan energi yang berpindah. Ingat ya, kalor bukan energi (kalor bukan suatu jenis energi tertentu). Jadi ketika kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah, sebenarnya energi-lah yang berpindah dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Proses perpindahan energi akan terhenti ketika benda-benda yang bersentuhan mencapai suhu yang sama. Berdasarkan penjelasan yang panjang pendek dan bertele2 di atas, kita bisa menyimpulkan bahwa kalor merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu.

Satuan kalor adalah kalori (disingkat kal). Satuan kalor yang sering digunakan, terutama untuk menyatakan nilai energi makanan adalah kilokalori (kkal). 1 kkal = 1000 kalori. 1 kkal = 1 Kalori (huruf K besar). Btw, kalori bukan satuan Sistem Internasional. Satuan Sistem Internasional untuk kalor adalah Joule (J).

Berdasarkan penjelasan di atas, tampak bahwa kalor (Q) memiliki kemiripan dengan usaha alias kerja (W). Kalor bisa diartikan sebagai perpindahan energi yang disebabkan oleh adanya perbedaan suhu, sedangkan usaha alias kerja bisa diartikan sebagai perpindahan energi melalui cara-cara mekanis (mekanis tuh berkaitan dengan gerak)…

SISTEM dan LINGKUNGAN

Dalam termodinamika, kita selalu menganalisis proses perpindahan energi dengan mengacu pada suatu sistem. Sistem adalah sebuah benda atau sekumpulan benda yang hendak diteliti… Benda-benda lainnya di alam semesta dinamakan lingkungan… Biasanya sistem dipisahkan dengan lingkungan menggunakan “penyekat/pembatas/pemisah”. Untuk memudahkan pemahamanmu, gurumuda menggunakan ilustrasi saja… tataplah gambar di bawah dengan penuh kelembutan…

suhu-kalor-kerja-sistem-energi-dalam-4

Misalnya kita hendak menyelidiki air yang berada di dalam termos. Air yang ada di dalam termos merupakan sistem, sedangkan udara dan benda-benda lainnya yang berada diluar termos merupakan lingkungan… dinding termos, baik dinding kaca pada bagian dalam termos maupun dinding plastik pada bagian luar termos berfungsi sebagai penyekat alias pemisah…

Terdapat beberapa jenis sistem, yakni sistem terbuka dan sistem tertutup. Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan… Contoh sistem terbuka adalah tumbuh-tumbuhan, hewan dkk… Tumbuh-tumbuhan biasanya menyerap air dan karbondioksida dari lingkungan (terjadi pertukaran materi). Tumbuhan juga membutuhkan kalor yang dipancarkan matahari (terjadi pertukaran energi). Dirimu dan diriku juga termasuk sistem terbuka… Masih banyak contoh lain…

Sebaliknya, sistem tertutup merupakan sistem yang tidak memungkinkan terjadinya pertukaran materi antara sistem tersebut dengan lingkungan. Sistem tertutup dikatakan terisolasi jika tidak adanya kemungkinan terjadi pertukaran energi antara sistem dengan lingkungan. Sistem tertutup dikatakan tidak terisolasi jika bisa terjadi pertukaran energi antara sistem dengan lingkungan… Contoh sistem tertutup yang terisolasi adalah termos air panas. Dinding bagian dalam dari termos air panas biasanya terbuat dari bahan isolator (untuk kasus ini, isolator = bahan yang tidak menghantarkan panas). Btw, dalam kenyataannya memang banyak sistem terisolasi buatan yang tidak sangat ideal. Minimal ada energi yang berpindah keluar, tapi jumlahnya sangat kecil.

ENERGI DALAM (U)

Energi dalam merupakan salah satu konsep paling penting dalam termodinamika. Kita bisa mendefinisikan energi dalam dengan mengacu pada teori kinetik. Teori kinetik mengatakan bahwa setiap zat terdiri dari atom atau molekul, di mana atom atau molekul tersebut bergerak terus menerus secara sembarangan… Ketika bergerak, atom atau molekul pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK). Kita bisa mengatakan bahwa energi dalam merupakan jumlah seluruh energi kinetik atom atau molekul, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara atom atau molekul…


Kalor dan Perubahan Wujud zat

Pengertian Kalor

Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.

Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan suatu benda(zat) bergantung pada 3 faktor

  1. massa zat
  2. jenis zat (kalor jenis)
  3. perubahan suhu

Sehingga secara matematis dapat dirumuskan :

Q = m.c.(t2 - t1)

Dimana :

Q adalah kalor yang dibutuhkan (J)

m adalah massa benda (kg)

c adalah kalor jenis (J/kgC)

(t2-t1) adalah perubahan suhu (C)

Kalor dapat dibagi menjadi 2 jenis

  • Kalor yang digunakan untuk menaikkan suhu
  • Kalor yang digunakan untuk mengubah wujud (kalor laten), persamaan yang digunakan dalam kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)

Dalam pembahasan kalor ada dua kosep yang hampir sama tetapi berbeda yaitu kapasitas kalor (H) dan kalor jenis (c)

Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu benda sebesar 1 derajat celcius.

H = Q/(t2-t1)

Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.

c = Q/m.(t2-t1)

Bila kedua persamaan tersebut dihubungkan maka terbentuk persamaan baru

H = m.c

Analisis grafik perubahan wujud pada es yang dipanaskan sampai menjadi uap. Dalam grafik ini dapat dilihat semua persamaan kalor digunakan.

Grafik Perubahan Wujud Es

Keterangan :

Pada Q1 es mendapat kalor dan digunakan menaikkan suhu es, setelah suhu sampai pada 0 C kalor yang diterima digunakan untuk melebur (Q2), setelah semua menjadi air barulah terjadi kenaikan suhu air (Q3), setelah suhunya mencapai suhu 100 C maka kalor yang diterima digunakan untuk berubah wujud menjadi uap (Q4), kemudian setelah berubah menjadi uap semua maka akan kembali terjadi kenaikan suhu kembali (Q5)

Untuk mencoba kemampuan silakan kkerjakan latihan soal dengan cara klik disini.

Hubungan antara kalor dengan energi listrik

Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.

Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.

W = Q

Untuk menghitung energi listrik digunakan persamaan sebagai berikut :

W = P.t

Keterangan :

W adalah energi listrik (J)

P adalah daya listrik (W)

t adalah waktu yang diperlukan (s)

Bila rumus kalor yang digunakan adalah Q = m.c.(t2 - t1) maka diperoleh persamaan ;

P.t = m.c.(t2 - t1)

Yang perlu diperhatikan adalah rumus Q disini dapat berubah-ubah sesuai dengan soal.

Asas Black

Menurut asas Black apabila ada dua benda yang suhunya berbeda kemudian disatukan atau dicampur maka akan terjadi aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran ini akan berhenti sampai terjadi keseimbangan termal (suhu kedua benda sama). Secara matematis dapat dirumuskan :

Q lepas = Q terima

Yang melepas kalor adalah benda yang suhunya tinggi dan yang menerima kalor adalah benda yang bersuhu rendah. Bila persamaan tersebut dijabarkan maka akan diperoleh :

Q lepas = Q terima

m1.c1.(t1 - ta) = m2.c2.(ta-t2)

Catatan yang harus selalu diingat jika menggunakan asasa Black adalah pada benda yang bersuhu tinggi digunakan (t1 - ta) dan untuk benda yang bersuhu rendah digunakan (ta-t2). Dan rumus kalor yang digunakan tidak selalu yang ada diatas bergantung pada soal yang dikerjakan.

Hukum gravitasi universal Newton

Hukum Newton tentang gaya tarik menarik gravitasi umum

Hukum tarik-menarik gravitasi Newton dalam bidang fisika berarti gaya tarik untuk saling mendekat satu sama lain. Dalam bidang fisika tiap benda dengan massa m1 selalu mempunyai gaya tarik menarik dengan benda lain (dengan massa m2 ). Misalnya partikel satu dengan partikel lain selalu akan saling tarik-menarik. Contoh yang dikemukakan oleh Sir Isaac Newton dalam bidang mekanika klasik bahwa benda apapun di atas atmosfir akan ditarik oleh bumi, yang kemudian banyak dikenal sebagai fenomena benda jatuh.

Gaya tarik menarik gravitasi ini dinyatakan oleh Isaac Newton melalui tulisannya di journal Philosophiæ Naturalis Principia Mathematica pada tanggal 5 Juli 1687 dalam bentuk rumus sebagai berikut:

F = G \frac{m_1 m_2}{r^2},

di mana:

  • F adalah besarnya gaya gravitasi antara dua massa tersebut,
  • G adalah konstante gravitasi,
  • m1 adalah massa dari benda pertama
  • m2 adalah massa dari benda kedua, dan
  • r adalah jarak antara dua massa tersebut.

Teori ini kemudian dikembangkan lebih jauh lagi bahwa setiap benda angkasa akan saling tarik-menarik, dan ini bisa dijelaskan mengapa bumi harus berputar mengelilingi matahari untuk mengimbangi gaya tarik-menarik gravitasi bumi-matahari. Dengan menggunakan fenomena tarik menarik gravitasi ini juga, meteor yang mendekat ke bumi dalam perjalanannya di ruang angkasa akan tertarik jatuh ke bumi.

Relativitas umum

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas










Relativitas umum (bahasa Inggris: general relativity) adalah sebuah teori geometri mengenai gravitasi yang diperkenalkan oleh Albert Einstein pada 1916. Teori ini merupakan penjelasan gravitasi termutakhir dalam fisika modern. Ia menyatukan teori Einstein sebelumnya, relativitas khusus, dengan hukum gravitasi Newton. Hal ini dilakukan dengan melihat gravitasi bukan sebagai gaya, tetapi lebih sebagai manifestasi dari kelengkungan ruang dan waktu. Utamanya, kelengkungan ruang waktu berhubungan langsung dengan momentum empat (energi massa dan momentum linear) dari materi atau radiasi apa saja yang ada. Hubungan ini digambarkan oleh persamaan medan Einstein.

Banyak prediksi relativitas umum yang berbeda dengan prediksi fisika klasik, utamanya prediksi mengenai berjalannya waktu, geometri ruang, gerakbenda pada jatuh bebas, dan perambatan cahaya. Contoh perbedaan ini meliputi dilasi waktu gravitasional, geseran merah gravitasional cahaya, dan tunda waktu gravitasional. Prediksi-prediksi relativitas umum telah dikonfirmasikan dalam semua percobaan dan pengamatan fisika. Walaupun relativitas umum bukanlah satu-satunya teori relativistik gravitasi, ia merupakan teori paling sederhana yang konsisten dengan data-data eksperimen. Namun, masih terdapat banyak pertanyaan yang belum terjawab. Secara mendasar, terdapat pertanyaan bagaimanakah relatvitas umum ini dapat digabungkan dengan hukum-hukum fisika kuantum untuk menciptakan teori gravitasi kuantum yang lengkap dan swa-konsisten.

Teori Einstein memiliki implikasi astrofisika yang penting. Teori ini memprediksikan adanya keberadaan daerah lubang hitam yang mana ruang dan waktu terdistorsi sedemikiannya tiada satu pun, bahkan cahaya pun, yang dapat lolos darinya. Terdapat bukti bahwa lubang hitam bintang dan jenis-jenis lubang hitam lainnya yang lebih besar bertanggungjawab terhadap radiasi kuat yang dipancarkan oleh objek-objek astronomi tertentu, seperti inti galaksi aktif dan miktrokuasar. Melengkungnya cahaya oleh gravitasi dapat menyebabkan fenomena pelensaan gravitasi. Relativitas umum juga memprediksikan keberadaan gelombang gravitasi. Keberadaan gelombang ini telah diukur secara tidak langsung, dan terdapat pula beberapa usaha yang dilakukan untuk mengukurnya secara langsung. Selain itu, relativitas umum adalah dasar dari model kosmologis untuk alam semesta yang terus berkembang.

Dari mekanika klasik menuju relativitas umum

Relativitas umum dapat dipahami dengan baik dengan mengevaluasi kemiripannya beserta perbedaannya dari fisika klasik. Langkah pertama adalah realisasi bahwa mekanika klasik dan hukum gravitasi Newton mengijinkan adanya deskripsi geometri. Kombinasi deskripsi ini dengan hukum-hukum relativitas khusus akan membawa kita kepada penurunan heuristik relativitas umum.[1]

Geometri gravitasi Newton

Dasar dari mekanika klasik adalah gagasan bahwa gerak benda dapat dideskripsikan sebagai kombinasi gerak bebas (atau gerak inersia) dengan penyimpangan dari gerak bebas ini. Penyimpangan ini disebabkan oleh gaya-gaya luar yang bekerja pada benda sesuai dengan hukum kedua Newton, yang menyatakan bahwa total keseluruhan gaya yang bekerja pada sebuah benda adalah sama dengan massa (inersia) benda tersebut dikalikan dengan percepatannya.[2] Gerak inersia yang dihasilkan berhubungan dengan geometri ruang dan waktu, yakni dalam standar kerangka acuan mekanika klasik, benda yang berada dalam keadaan jatuh bebas bergerak searah garis lurus dengan kecepatan konstan. Dalam bahasa fisika modern, lintasan benda bersifat geodesik, yaitu garis dunia yang lurus dalam ruang waktu.[3]

Bola yang jatuh menuju lantai roket yang dipercepat (kiri) dan bola yang jatuh menuju Bumi (kanan)

Sebaliknya, seseorang dapat mengharapkan bahwa seketika berhasil diidentifikasi dengan memantau gerak benda sebenarnya dan mempertimbangkan gaya-gaya luar (seperti gaya elektromagnetik dan gesekan), gerak inersia dapat digunakan untuk menentukan geometri ruang dan juga waktu. Namun, akan terdapat ambiguitas ketika gravitasi diperhitungkan ke dalamnya. Menurut hukum gravitasi Newton, terdapat apa yang disebut sebagai universalitas jatuh bebas, yaitu bahwa lintasan suatu benda yang jatuh bebas bergantung hanya pada posisi dan kecepatan awalnya, dan bukannya bergantung pada sifat-sifat bahan penyusunnya.[4] Versi yang lebih sederhana dapat dilihat pada percobaan elevator Einstein, yang digambarkan pada gambar di samping. Untuk seorang pengamat dalam ruang tertutup yang kecil, adalah tidak mungkin untuk menentukan apakah ruang itu berada dalam keadaan diam dalam suatu medan gravitasi ataukah ia berada di dalam roket yang dipercepat hanya dengan memetakan lintasan bola jatuh tersebut.[5]

Disebabkan oleh universalitas jatuh bebas, tiada perbedaan terpantau yang dapat dipantau antara gerak inersial dengan gerak yang berada di bawah pengaruh gaya gravitasi. Ini kemudian mengarahkan kita pada suatu definisi gerak inersia yang baru, yaitu gerak inersia objek jatuh bebas yang berada di bawah pengaruh gaya gravitasi. Jenis gerak ini juga menentukan geometri ruang dan waktu. Gerak ini adalah gerak geodesik yang diasosiasikan dengan koneksi tertentu yang bergantung pada gradien potensial gravitasi. Ruang, dalam konstruksi ini, masih memiliki geometri Euklides yang seperti biasanya, namun ruang waktu secara keseluruhan menjadi lebih rumit. Seperti yang dapat ditunjukkan dengan menggunakan eksperimen pemikiran sederhana yang menelurusi lintasan partikel-partikel pengujian yang sedang jatuh bebas, hasil dari pemasukan vektor-vektor ruang waktu yang menandakan kecepatan suatu partikel akan bervariasi sesuai dengan lintasan partikel. Secara matematis, kita katakan bahwa koneksi Newtonian tidaklah terintegralkan. Dari hal ini, seseorang dapat mendeduksi bahwa ruang waktu adalah melengkung. Akibatnya adalah perumusan geometri gravitasi Newtonian yang hanya menggunakan konsep kovarian.[6] Dalam deskripsi geometri ini, efek pasang surut - yaitu percepatan relatif benda yang jatuh bebas - berhubungan dengan turunan koneksi, menunjukkan bagaiman geometri yang dimodifikasikan ini diakibatkan oleh keberadaan massa.[7]

Gravitasi

Gravitasi mengakibatkan benda-benda langit berada pada orbit masing-masing dalam mengitari matahari

Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.

Sebagai contoh, bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda di sekitarnya, termasuk makhluk hidup, dan benda-benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada di luar angkasa, seperti bulan, meteor, dan benda angkasa lainnya, termasuk satelit buatan manusia.

Beberapa teori yang belum dapat dibuktikan menyebutkan bahwa gaya gravitasi timbul karena adanya partikel gravitron dalam setiap atom.

Hukum Gravitasi Universal Newton

Hukum gravitasi universal Newton dirumuskan sebagai berikut:

Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F = G \frac{m_1 m_2}{r^2} = m_1 g
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut
G adalah konstanta gravitasi
m1 adalah besar massa titik pertama
m2 adalah besar massa titik kedua
r adalah jarak antara kedua massa titik, dan
g adalah percepatan gravitasi = G  \frac{m_2}{r^2}

Dalam sistem Internasional, F diukur dalam newton (N), m1 dan m2 dalam kilograms (kg), r dalam meter (m), dsn konstanta G kira-kira sama dengan 6,67 × 10−11 N m2 kg−2.

Dari persamaan ini dapat diturunkan persamaan untuk menghitung Berat. Berat suatu benda adalah hasil kali massa benda tersebut dengan percepatan gravitasi bumi. Persamaan tersebut dapat dituliskan sebagai berikut: W = mg. W adalah gaya berat benda tersebut, m adalah massa dan g adalah percepatan gravitasi. Percepatan gravitasi ini berbeda-beda dari satu tempat ke tempat lain.

Sabtu, 17 Juli 2010

Pengertian dan Jenis-jenis Gelombang

Pengantar

Pernahkah anda bermain ke pantai ? wah… kalau yang tinggal di daerah yang jauh dari pantai kayanya belum neh… :) suatu pemandangan indah ketika kita berada di pantai adalah gulungan gelombang laut yang datang dari tengah dan akhirnya pecah di tepi pantai… indah sekali, apalagi ketika kita berada di pantai kuta, Bali…. Gelombang laut merupakan salah satu contoh gelombang yang sering kita temui dalam kehidupan sehari-hari. Selain gelombang laut, masih terdapat banyak contoh lainnya. Ketika anda melempar sebuah batu kecil pada permukaan air yang tenang, akan muncul gelombang yang berbentuk lingkaran dan bergerak ke luar. Contoh lain adalah gelombang yang merambat sepanjang tali yang terentang lurus, ketika kita menggerakan tali naik turun. Btw, sebenarnya gelombang itu apa ? terus apa yang menjadi penyebab adanya gelombang ?

Ketika kita berbicara mengenai gelombang, kita tidak bisa mengabaikan getaran. Getaran dan gelombang mempunyai hubungan yang erat sekali. Pokok bahasan getaran telah anda pelajari di kelas XI, mudah-mudahan anda belum melupakannya. Sebaiknya klik link di atas dan segera meluncur ke TKP untuk mempelajarinya lagi, seandainya dirimu telah melupakannya. Kali ini gurumuda mencoba menyinggung kembali apa itu getaran (Cuma intisarinya) dan bagaimana kaitannya dengan gelombang.

Getaran alias osilasi merupakan gerak bolak balik suatu partikel secara periodik di sekitar titik kesetimbangannya (jangan pake hafal.. pahami saja). Terdapat dua contoh umum getaran yang kita temui dalam kehidupan sehari-hari, yakni getaran benda pada pegas dan getaran benda pada ayunan sederhana (contoh getaran benda pada ayunan sederhana adalah getaran bandul).

Getaran yang terjadi pada suatu benda disebabkan oleh adanya gangguan yang diberikan pada benda tersebut. Untuk kasus getaran bandul dan getaran benda pada pegas, gangguan tersebut disebabkan oleh adanya gaya luar (dalam hal ini kita yang menggerakan bandul atau benda pada pegas). Sebenarnya terdapat banyak contoh getaran yang dapat kita jumpai dalam kehidupan sehari-hari. Garputala bergetar ketika kita memberikan gangguan dengan cara memukul garputala tersebut. Kendaraan akan bergetar ketika mesinnya dinyalakan, dalam hal ini kendaraan tersebut diberi gangguan. Suara yang kita ucapkan tidak akan terdengar apabila pita suara kita tidak bergetar. Seindah apapun alunan musik, jika loudspeaker yang berfungsi sebagai sumber bunyi dan gendang telinga kita sebagai penerima tidak bergetar, maka dapat dipastikan kita tidak akan pernah mendengar musik tersebut.

Setiap gangguan yang diberikan kepada suatu benda akan menimbulkan getaran pada benda tersebut dan getaran ini akan merambat dari suatu tempat ke tampat lain melalui suatu medium tertentu (medium = perantara). Dalam hal ini, peristiwa perambatan getaran dari suatu tempat ke tempat lain melalui suatu medium tertentu disebut gelombang. Dengan kata lain, gelombang merupakan getaran yang merambat dan getaran sendiri merupakan sumber gelombang.

Ketika kita melempar batu ke dalam genangan air yang tenang, gangguan yang kita berikan menyebabkan partikel air bergetar alias berosilasi terhadap titik setimbangnya. Perambatan getaran pada air menyebabkan adanya gelombang pada genangan air tadi. Jika kita menggetarkan ujung tali yang terentang maka gelombang akan merambat sepanjang tali tersebut. Gelombang tali dan gelombang air adalah dua contoh umum gelombang yang dengan mudah kita saksikan dalam kehidupan sehari-hari.

Perlu anda ketahui bahwa ketika melihat gelombang pada genangan air, seolah-olah tampak bahwa gelombang tersebut membawa air keluar dari pusat lingkaran. Atau ketika menyaksikan gelombang laut bergerak ke pantai, mungkin anda berpikir bahwa gelombang membawa air laut menuju ke pantai. Kenyataannya bukan seperti itu. Sebenarnya yang anda saksikan adalah setiap partikel air tersebut berosilasi (bergerak naik turun) terhadap titik setimbangnya. Agar lebih memahami penjelasan gurumuda, alangkah baiknya jika dirimu melakukan percobaan kecil-kecilan. Coba letakan benda yang bisa terapung di atas air yang bergelombang. Dirimu akan mengamati benda tersebut bergerak naik turun pada tempat yang sama. Hal ini menujukkan bahwa gelombang tidak memindahkan air tersebut. Kalau gelombang memindahkan air, maka benda yang terapung juga ikut bepindah. Jadi air hanya berfungsi sebagai medium bagi gelombang untuk merambat. Paham khan ?

Oya, apakah dirimu pernah mandi di laut ? yang gurumuda maksudkan adalah ketika air laut sedang bergelombang. Seandainya pernah, dirimu pasti merasa terhempas ketika diterpa gelombang laut… gurumuda termasuk anak pantai, sehingga sering merasakan hempasan gelombang ketika mandi di laut. Mengapa tubuh kita terhempas ketika diterpa gelombang laut ? Apabila dirimu tinggal di kota dan sering mandi di kolam renang, coba lakukan percobaan berikut. Guncangkan tangan anda di dalam air kolam sampai air kolam tersebut bergelombang. Ketika air kolam menjadi bergelombang, apakah dirimu merasakan dorongan yang ditimbulkan air tersebut ? walaupun efeknya kecil, gurumuda yakin anda pasti merasakan dorongan air kolam… bagi yang alergi air alias tidak pernah mandi di laut atau kolam renang, coba lakukan percobaan berikut… cari sebuah tali yang agak panjang… jika anda tidak punya koleksi tali, silahkan pinjam di toko terdekat :) minta bantuan seorang teman untuk menggerakan salah satu ujung tali naik turun, sehingga tali tersebut bergelombang… nah, dirimu berdiri di ujung tali yang lain. Usahakan agar anda berdiri tepat pada ujung tali (talinya jangan dipegang, dibiarkan saja di lantai atau tanah). Ketika temanmu menggerakan tali dengan kuat, pasti akan terasa sakit jika salah satu ujung tali mengenai tubuh anda… mengapa demikian ? penjelasan panjang lebar ini hanya mau menunjukkan kepada anda bahwa setiap gelombang selalu membawa energi dari satu tempat ke tempat yang lain. Ketika mandi di laut, tubuh kita terhempas ketika diterpa gelombang laut karena terdapat energi pada gelombang laut. Energi yang terdapat pada gelombang laut bisa bersumber dari angin dkk. Ketika anda mengguncangkan tangan di dalam air kolam, sebenarnya anda sedang memindahkan energi pada air. Demikian juga ketika teman anda menggerakan tali, pada saat itu juga terjadi perpindahan energi dari tangan ke tali, yang kemudian membawanya sepanjang tali tersebut. Sakit yang dirasakan ketika salah satu ujung tali mengenai tubuh anda, disebabkan karena energi pada tali dipindahkan pada bagian tubuh yang bersentuhan dengan tali.

JENIS-JENIS GELOMBANG

Pada penjelasan di atas, gurumuda telah menyebutkan beberapa contoh gelombang yang kita temui dalam kehidupan sehari-hari. Itu baru beberapa contoh… masih banyak contoh lain yang belum disebutkan. Walaupun terdapat banyak contoh gelombang dalam kehidupan kita, secara umum hanya terdapat dua jenis gelombang saja, yakni gelombang mekanik dan gelombang elektromagnetik. Pembagian jenis gelombang ini didasarkan pada medium perambatan gelombang.

Gelombang Mekanik

Gelombang mekanik merupakan gelombang yang membutuhkan medium untuk berpindah tempat. Gelombang laut, gelombang tali atau gelombang bunyi termasuk dalam gelombang mekanik. Kita dapat menyaksikan gulungan gelombang laut karena gelombang menggunakan laut sebagai perantara. Kita bisa mendengarkan musik karena gelombang bunyi merambat melalui udara hingga sampai ke telinga kita. Tanpa udara kita tidak akan mendengarkan bunyi. Dalam hal ini udara berperan sebagai medium perambatan bagi gelombang bunyi.

Gelombang mekanik terdiri dari dua jenis, yakni gelombang transversal (transverse wave) dan gelombang longitudinal (longitudinal wave). Silahkan nonton video di bawah…

Gelombang Transversal

Suatu gelombang dapat dikelompokkan menjadi gelombang trasnversal jika partikel-partikel mediumnya bergetar ke atas dan ke bawah dalam arah tegak lurus terhadap gerak gelombang. Contoh gelombang transversal adalah gelombang tali. Ketika kita menggerakan tali naik turun, tampak bahwa tali bergerak naik turun dalam arah tegak lurus dengan arah gerak gelombang. Bentuk gelombang transversal tampak seperti gambar di bawah.

Berdasarkan gambar di atas, tampak bahwa gelombang merambat ke kanan pada bidang horisontal, sedangkan arah getaran naik-turun pada bidang vertikal. Garis putus-putus yang digambarkan di tengah sepanjang arah rambat gelombang menyatakan posisi setimbang medium (misalnya tali atau air). Titik tertinggi gelombang disebut puncak sedangkan titik terendah disebut lembah. Amplitudo adalah ketinggian maksimum puncak atau kedalaman maksimum lembah, diukur dari posisi setimbang. Jarak dari dua titik yang sama dan berurutan pada gelombang disebut panjang gelombang (disebut lambda – huruf yunani). Panjang gelombang juga bisa juga dianggap sebagai jarak dari puncak ke puncak atau jarak dari lembah ke lembah.

Gelombang Longitudinal

Selain gelombang transversal, terdapat juga gelombang longitudinal. Jika pada gelombang transversal arah getaran medium tegak lurus arah rambatan, maka pada gelombang longitudinal, arah getaran medium sejajar dengan arah rambat gelombang. Jika dirimu bingung dengan penjelasan ini, bayangkanlah getaran sebuah pegas. Perhatikan gambar di bawah…

Pada gambar di atas tampak bahwa arah getaran sejajar dengan arah rambatan gelombang. Serangkaian rapatan dan regangan merambat sepanjang pegas. Rapatan merupakan daerah di mana kumparan pegas saling mendekat, sedangkan regangan merupakan daerah di mana kumparan pegas saling menjahui. Jika gelombang tranversal memiliki pola berupa puncak dan lembah, maka gelombang longitudinal terdiri dari pola rapatan dan regangan. Panjang gelombang adalah jarak antara rapatan yang berurutan atau regangan yang berurutan. Yang dimaksudkan di sini adalah jarak dari dua titik yang sama dan berurutan pada rapatan atau regangan (lihat contoh pada gambar di atas).

Salah satu contoh gelombang logitudinal adalah gelombang suara di udara. Udara sebagai medium perambatan gelombang suara, merapat dan meregang sepanjang arah rambat gelombang udara. Berbeda dengan gelombang air atau gelombang tali, gelombang bunyi tidak bisa kita lihat menggunakan mata. Dirimu suka denger musik khan ? nah, coba sentuh loudspeaker ketika dirimu sedang memutar lagu. Semakin besar volume lagu yang diputar, semakin keras loudspeaker bergetar. Kalau diperhatikan secara seksama, loudspeaker tersebut bergetar maju mundur. Dalam hal ini loudspeaker berfungsi sebagai sumber gelombang bunyi dan memancarkan gelombang bunyi (gelombang longitudinal) melalui medium udara. Mengenai gelombang bunyi selengkapnya akan dipelajari pada pokok bahasan tersendiri.

Pada pembahasan di atas, sudah gurumuda jelaskan bahwa gelombang tali merupakan contoh gelombang transversal, sedangkan contoh gelombang longitudinal adalah gelombang bunyi. Lalu bagaimana dengan gelombang air ? gelombang air bukan sepenuhnya gelombang transversal atau gelombang longitudinal. Gelombang air merupakan gabungan antara gelombang transversal dan gelombang longitudinal. Untuk memudahkan pemahaman dirimu, silahkan nonton video di bawah ini.

Dari penjelasan panjang lebar dan bertele-tele sebelumnya ;) , kita bisa menyimpulkan beberapa hal penting berkaitan dengan gelombang mekanik :

Pertama, gelombang merupakan getaran yang merambat dengan laju tertentu melalui medium tertentu. Medium yang dimaksudkan di sini bisa berupa tali, air, pegas, tanah dan sebagainya. Laju getaran yang merambat dikenal dengan julukan laju perambatan alias laju gelombang (v). Laju gelombang ditentukan oleh sifat-sifat medium yang dilalui oleh gelombang. Btw, jangan kacaukan laju gelombang dengan laju medium yang dilalui oleh gelombang.

Kedua, medium yang dilalui oleh gelombang hanya bergerak bolak balik pada posisi setimbangnya, medium tidak merambat seperti gelombang.

Ketiga, gelombang bisa terjadi jika suatu medium bergetar atau berosilasi. Suatu medium bisa bergetar atau berosilasi jika dilakukan usaha alias kerja pada medium tersebut. Dalam hal ini, ketika usaha atau kerja dilakukan pada suatu medium maka energi dipindahkan pada medium tersebut. Nah, ketika getaran merambat (getaran yang merambat disebut gelombang), energi dipindahkan dari suatu tempat ke tempat lain melalui medium tersebut. Gelombang tidak memindahkan materi atau medium yang dilaluinya, gelombang hanya memindahkan energi… perhatikan bahwa pembahasan kita sebelumnya berkaitan dengan gelombang mekanik. Karenanya jika disebutkan gelombang maka yang saya maksudkan adalah gelombang mekanik.

Gelombang Elektromagnet

Sebelumnya kita sudah mengobok2 gelombang mekanik. Nah, kalau gelombang mekanik membutuhkan medium untuk berpindah tempat alias bergentayangan dari satu tempat ke tempat lain, bagaimana dengan gelombang elektromagnet ? Untuk bergentanyangan dari satu tempat ke tempat lain, gelombang elektromagnet tidak membutuhkan medium… kok bisa ? yupz… mengenai gelombang elektromagnetik selengkapnya kita obok2 pada pembahasan mengenai gelombang elektromagnet.

Sebelumnya kita sudah mengelompokkan gelombang berdasarkan medium perambatan. Btw, gelombang juga bisa dikelompokkan berdasarkan banyaknya dimensi yang dilalui gelombang ketika bergentanyangan dari suatu tempat ke tempat lain. Berdasarkan banyaknya dimensi, gelombang bisa dikelompokkan menjadi gelombang berdimensi satu, gelombang berdimensi dua, gelombang berdimensi tiga. Gelombang tali dan gelombang pegas merupakan contoh gelombang berdimensi satu… riak air termasuk gelombang berdimensi dua. Sebaliknya gelombang bunyi dan gelombang elektromagnetik termasuk gelombang berdimensi tiga…


Energi, Daya, Intensitas gelombang

Dirimu pernah mandi di laut ? yang gurumuda maksudkan adalah ketika air laut sedang bergelombang. Seandainya pernah, dirimu pasti pernah merasa terhempas ketika diterpa gelombang laut… Mengapa tubuh kita terhempas ketika diterpa gelombang laut ? Apabila dirimu tinggal di kota dan sering mandi di kolam renang, coba lakukan percobaan berikut. Guncangkan tanganmu di dalam air kolam sampai air kolam tersebut bergelombang. Ketika air kolam menjadi bergelombang, apakah dirimu merasakan dorongan yang ditimbulkan air tersebut ? walaupun efeknya kecil, gurumuda yakin dirimu pasti merasakan dorongan air kolam…

Kalo dirimu belum pernah mandi di laut atau di kolam renang, coba lakukan percobaan berikut… cari seutas tali yang agak panjang… minta bantuan seorang teman untuk menggerakan salah satu ujung tali naik turun, sehingga tali tersebut bergelombang… nah, dirimu berdiri di ujung tali yang lain. Usahakan agar dirimu berdiri tepat pada ujung tali (talinya jangan dipegang, dibiarkan saja di lantai atau tanah). Ketika temanmu menggerakkan tali dengan kuat, pasti akan terasa sakit jika salah satu ujung tali mengenai tubuhmu… mengapa tubuhmu bisa terasa sakit ?

Penjelasan panjang lebar di atas hanya mau menunjukkan kepadamu bahwa setiap gelombang selalu membawa energi dari satu tempat ke tempat lain. Ketika mandi di laut, tubuh kita terhempas ketika diterpa gelombang laut karena terdapat energi pada gelombang laut. Energi yang terdapat pada gelombang laut bisa bersumber dari angin dkk. Ketika dirimu mengguncangkan tangan di dalam air kolam, sebenarnya dirimu sedang memindahkan energi pada air. Ingat lagi teorema kerja-energi. Ketika dirimu mengguncangkan tangan di dalam air, sebenarnya dirimu mendorong atau memberi gaya dorong pada air. Adanya dorongan menyebabkan air bergerak. Perhatikan bahwa arah gerakan air pasti searah dengan arah doronganmu… karena air bergerak atau mengalami perpindahan akibat adanya gaya dorong yang dirimu berikan maka bisa dikatakan bahwa dirimu melakukan usaha alias kerja pada air. Pelajari lagi materi usaha dan energi kalo dirimu lupa :(

Ketika dirimu melakukan kerja pada air, energi berpindah dari dirimu menuju air… energi tersebut selanjutnya dipindahkan dari satu tempat ke tempat lain selama perambatan gelombang dalam air… dirimu bisa terhempas atau merasakan efek dorongan ketika gelombang mengenaimu… ingat ya, energi merupakan kemampuan untuk melakukan kerja dan gelombang merupakan getaran yang merambat… Dirimu bisa terhempas karena setiap molekul air yang bergetar melakukan usaha alias kerja padamu… Usaha alias kerja bisa terjadi jika ada gaya, karenanya bisa dikatakan bahwa molekul-molekul air yang sedang berosilasi memberikan gaya dorong alias mendorong-dorong dirimu ;)

Hal yang sama terjadi ketika gelombang merambat melalui tali. Ketika temanmu menggerakkan tali naik turun (temanmu mendorong tali ke atas dan ke bawah), pada saat yang sama temanmu melakukan usaha alias kerja pada tali yang dipegangnya. Tentu saja energi berpindah dari temanmu menuju tali… ketika bagian tali yang digerakkan oleh temanmu bergerak ke atas dan ke bawah, bagian tali yang bergerak tersebut akan mendorong temannya yang ada disampingnya… temannya tentu bergerak. temannya ikut2an mendorong temannya yang ada di samping… demikian seterusnya. Jadi selama setiap bagian tali bergerak naik turun alias berosilasi di sekitar posisi setimbangnya, setiap bagian tali tersebut melakukan usaha alias kerja pada temannya. Pada saat yang sama energi berpindah dari satu bagian tali ke bagian tali yang lain… ketika ujung tali mengenai tubuhmu, tubuhmu akan terasa sakit… tubuhmu bisa sakit karena ujung tali tersebut mencoba melakukan usaha alias kerja padamu… Dalam hal ini, ujung tali tersebut memberikan gaya dorong pada tubuhmu… gaya dorong yang diberikan oleh ujung tali pada tubuhmu berlangsung selama selang waktu yang sangat singkat (gaya impuls) sehingga tubuhmu terasa sakit… ingat lagi materi impuls dan momentum.

Penjelasan gurumuda sebelumnya bersifat kualitatif alias tidak pake rumus segala… kali ini kita mencoba mengobok2 rumus berkaitan dengan energi yang dipindahkan selama perambatan gelombang harmonik melalui medium tertentu. Sebagaimana telah dijelaskan sebelumnya, gelombang merupakan getaran yang merambat… karenanya jika kita membahas gelombang maka kita tidak bisa memisahkan diri dari getaran. Demikian juga jika kita membahas gelombang harmonik maka kita tidak bisa memisahkan diri dari gerak harmonik sederhana. Keduanya punya kaitan erat, termasuk persamaan alias rumus2 yang kita gunakan…

Dalam pokok bahasan energi Gerak Harmonik Sederhana (materi getaran), kita sudah mempelajari bahwa energi total yang dimiliki oleh suatu benda yang berosilasi di ujung pegas dinyatakan melalui persamaan :

di mana A adalah amplitudo, sedangkan k adalah konstanta gaya (bukan bilangan gelombang). Kita bisa menurunkan persamaan konstanta gaya (k) dari persamaan periode GHS :

Kita gantikan k dalam persamaan Energi GHS dengan k pada persamaan di atas :

Sebagai contoh untuk meninjau energi yang dipindahkan selama perambatan gelombang, kita tinjau gelombang harmonik yang berbentuk transversal yang merambat melalui tali. Perhatikan gambar di bawah :

Tali bisa dianggap terdiri dari potongan2 kecil, di mana masing2 potongan tali tersebut bermassa delta m. Ketika gelombang merambat melalui tali, setiap bagian tali atau setiap potongan tali melakukan gerak harmonik sederhana. Dengan demikian, setiap potongan tali memiliki energi yang dinyatakan melalui persamaan : delta x bisa dianggap sebagai jarak yang ditempuh gelombang selama selang waktu delta t. Karenanya delta x bisa dinyatakan dalam persamaan :

Di mana v merupakan laju perambatan gelombang. Kita masukan persamaan ini ke dalam persamaan energi :

Berdasarkan persamaan ini tampak bahwa energi yang dibawa oleh gelombang berbanding lurus alias sebanding dengan kuadrat frekuensi (f2) dan kuadrat amplitudo (A2) dan laju gelombang (v).

Daya merupakan laju perpindahan energi. Daya yang dipindahkan oleh gelombang harmonik adalah :

Keterangan :

Intensitas Gelombang

Sebelumnya kita sudah membahas energi dan daya yang dibawa oleh gelombang harmonik ketika merambat melalui tali. Jika kita berbicara mengenai gelombang tiga dimensi (gelombang yang merambat melalui ruang, misalnya gelombang bunyi atau gelombang gempa) maka lebih penting jika kita membahas Intensitas (I) gelombang.

Intensitas (I) gelombang merupakan daya yang dibawa oleh gelombang melalui satu satuan luas yang tegak lurus dengan arah perambatan gelombang. Untuk membantu kita menurunkan persamaan intensitas gelombang, perhatikan gambar di bawah :

Kita tulis lagi persamaan energi sebelumnya :

Keterangan :

Daya yang dipindahkan oleh gelombang harmonik adalah :

Intensitas (I) gelombang :

Dari persamaan ini tampak bahwa intensitas sebanding dengan kuadrat amplitudo, kuadrat frekuensi sudut, laju dan massa jenis medium.