Kamis, 22 Juli 2010

Kerja, Suhu, Kalor, Sistem, Lingkungan, Energi dalam

Pengantar

Sebelum melangkah lebih jauh, alangkah baiknya jika kita pahami kembali beberapa istilah dan konsep dasar yang sering digunakan dalam pokok bahasan termodinamika. Konsep usaha alias kerja (W) sudah dikupas tuntas dalam pokok bahasan usaha dan energi. Konsep suhu dan kalor sudah diobok-obok dalam pokok bahasan Suhu dan Kalor. Konsep energi dalam (energi dalam gas ideal) sudah dioprek dalam pokok bahasan Teori Kinetik Gas. Daripada dirimu harus membuka kembali lembaran yang lama, alangkah baiknya jika kita buka saja lembaran yang baru ;) Met belajar, selamat menikmati sajian dari gurumuda… Semoga terasa lezat dan nikmat di otak… hiks2…

USAHA alias KERJA (W)

Sejauh ini kita sudah berkenalan dengan dua jenis gerakan, yakni gerak translasi (gerak lurus, gerak parabola dkk) dan gerak rotasi. Dengan demikian, kita bisa mengelompokkan kerja menjadi dua bagian, yakni kerja dalam gerak translasi dan kerja dalam gerak rotasi.

Kerja dalam gerak translasi

Dalam gerak translasi, kerja didefinisikan sebagai hasil kali antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-1

Keterangan :

W = Usaha alias kerja

F = gaya

s = perpindahan = perpindahan linear

Apabila benda yang dikenai gaya tidak mengalami perpindahan (s = 0), maka usaha alias kerja = 0. Demikian juga, apabila arah gaya tegak lurus arah perpindahan (teta = 90o. Cos 90o = 0), maka usaha alias kerja = 0.

Usaha hanya memiliki besar dan tidak mempunyai arah, karenanya termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Pelajari lagi materi vektor dan skalar kalau dirimu bingung…

Kerja dalam gerak rotasi

Dalam gerak rotasi, kerja didefinisikan sebagai hasil kali antara torsi dengan perpindahan sudut. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-2

Satuan Sistem Internasional (SI) untuk usaha alias kerja adalah newton meter (Nm). Satuan newton meter dikenal dengan julukan Joule ( 1 Joule = 1 N.m).

Hubungan antara usaha dengan energi

Usaha alias kerja berkaitan erat dengan energi. Untuk memahami hal ini, gurumuda menggunakan contoh saja… Misalnya dirimu mendorong sepeda motor yang lagi mogok… Sepeda motor bisa bergerak sejauh jarak tertentu (s) akibat adanya gaya dorong (F). Dalam hal ini, sepeda motor bisa bergerak karena dirimu melakukan usaha alias kerja pada sepeda motor tersebut. Ingat : Usaha alias kerja = W = Gaya dorong (F) x Perpindahan (s). Nah, ketika mendorong sepeda motor, dirimu kelelahan alias cape juga khan ? Hal itu disebabkan karena energi potensial kimia dalam tubuhmu berkurang. Sebagian energi potensial kimia dalam tubuhmu dipindahkan ke sepeda motor tersebut. Ketika bergerak, sepeda motor juga punya energi (energi kinetik = EK = ½ mv2. m = massa motor, v = kecepatan motor). Kita bisa mengatakan bahwa ketika dirimu melakukan usaha alias kerja pada motor, energi dalam tubuhmu dipindahkan pada sepeda motor.

Berdasarkan uraian singkat ini, bisa disimpulkan bahwa usaha alias kerja merupakan proses perpindahan energi melalui cara-cara mekanis (mekanis berhubungan dengan gerak menggerak ;) )…

SUHU (T)

Konsep suhu alias temperatur sebenarnya berawal dari rasa panas dan dingin yang dialami oleh indera peraba kita. Berdasarkan apa yang dirasakan oleh indera peraba, kita bisa mengatakan suatu benda lebih panas dari benda yang lain. Atau suatu benda lebih dingin dari benda lain. Ukuran panas atau dinginnya suatu benda ini dikenal dengan julukan suhu alias temperatur. Benda yang terasa panas biasanya memiliki suhu yang lebih tinggi. Sebaliknya, benda yang terasa dingin memiliki suhu yang lebih rendah. Semakin dingin suatu benda, semakin rendah suhunya. Sebaliknya, semakin panas suatu benda, semakin tinggi suhunya. Btw, ukuran panas atau dinginnya suatu benda yang hanya didasarkan pada sentuhan (indera peraba) ini sebenarnya tidak terlalu jelas. Panas yang dirasakan oleh setiap orang bisa saja berbeda. Demikian juga, walaupun menyentuh benda yang sama, panas yang dirasakan oleh bagian tubuh yang berbeda bisa saja berbeda.

Dalam pokok bahasan teori kinetik gas kita sudah mendefinisikan kembali makna suhu. Berdasarkan sudut pandang mikroskopis, suhu sebenarnya merupakan ukuran dari energi kinetik translasi rata-rata molekul.

Satuan Sistem Internasional untuk suhu adalah Kelvin (K).

KALOR alias PANAS (Q)

Apabila benda2 yang memiliki perbedaan suhu saling bersentuhan, akan ada aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor akan terhenti setelah kedua benda yang bersentuhan mencapai suhu yang sama. Misalnya kalau kita mencampur air panas dengan air dingin, biasanya kalor mengalir dari air panas menuju air dingin. Kalor berhenti mengalir jika campuran air panas dan air dingin telah berubah menjadi air hangat. Biasanya kalor mengalir dengan sendirinya dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor cenderung menyamakan suhu benda yang bersentuhan.

Pada abad ke-18, para ilmuwan berpikir bahwa aliran kalor merupakan gerakan suatu fluida, suatu jenis fluida yang tidak kelihatan (fluida tuh zat yang dapat mengalir. Yang termasuk fluida adalah zat cair dan zat gas. Misalnya air… air khan bisa mengalir. Atau udara… Udara juga bisa mengalir). Fluida tersebut dinamakan Caloric. Teori mengenai Caloric ini akhirnya tidak digunakan lagi karena berdasarkan hasil percobaan, keberadaan si caloric ini tidak bisa dibuktikan.

Pada abad ke-19, seorang pembuat minuman dari Inggris yang bernama James Prescott Joule (1818-1889) mempelajari cara bagaimana agar air yang ada di dalam sebuah wadah bisa dipanaskan menggunakan roda pengaduk. Berikut ini kilasan singkat percobaan yang dilakukan oleh om Jimi.

suhu-kalor-kerja-sistem-energi-dalam-3

Tataplah gambar di atas dengan penuh kelembutan. Pengaduk menempel dengan sumbu putar. Sumbu putar dihubungkan dengan beban menggunakan tali. Ketika beban jatuh, tali akan memutar sumbu sehingga pengaduk ikut2an berputar. Jika jumlah lilitan tali sedikit dan jarak jatuhnya beban kecil, maka kenaikan suhu air juga sedikit. Sebaliknya, jika lilitan tali diperbanyak dan benda jatuh lebih jauh, maka kenaikan suhu air juga lebih besar.

Ketika pengaduk berputar, pengaduk melakukan usaha alias kerja pada air. Besarnya kerja alias usaha yang dilakukan oleh pengaduk pada air sebanding dengan besarnya kerja alias usaha yang dilakukan oleh gaya gravitasi terhadap beban hingga beban jatuh sejauh h. Ingat rumus usaha alias kerja : Usaha (W) = Gaya (F) x perpindahan (s) = Gaya berat beban (w) x perpindahan beban (h) = massa beban (m) x percepatan gravitasi (g) x ketinggian (h). Ketika melakukan kerja terhadap air, pengaduk menambahkan energi pada air (ingat konsep usaha dan energi). Karenanya kita bisa mengatakan bahwa kenaikan suhu air disebabkan oleh energi yang dipindahkan dari pengaduk menuju air. Semakin besar kerja yang dilakukan, semakin banyak energi yang dipindahkan. Semakin banyak energi yang dipindahkan, semakin besar kenaikan suhu air (air semakin panas).

Berdasarkan hasil percobaannya, om Jimi Joule membuat perbandingan. Ketika ibu kesayangan hendak memanaskan air di dapur, wadah yang berisi air disentuhkan dengan nyala api yang menyembur dari kompor. Ketika nyala api dan wadah yang berisi air bersentuhan, kalor mengalir dari api (suhu tinggi) menuju air (suhu rendah). Oya, aliran kalor mampir sebentar di wadah. Karena ada aliran kalor dari api menuju air, maka air yang pada mulanya kedinginan menjadi kepanasan (suhu air meningkat).

Setelah membuat perbandingan antara meningkatnya suhu air karena bersentuhan dengan api dan meningkatnya suhu air akibat adanya kerja yang dilakukan oleh pengaduk, om Jimi menyimpulkan bahwa kalor sebenarnya merupakan energi yang berpindah. Ingat ya, kalor bukan energi (kalor bukan suatu jenis energi tertentu). Jadi ketika kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah, sebenarnya energi-lah yang berpindah dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Proses perpindahan energi akan terhenti ketika benda-benda yang bersentuhan mencapai suhu yang sama. Berdasarkan penjelasan yang panjang pendek dan bertele2 di atas, kita bisa menyimpulkan bahwa kalor merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu.

Satuan kalor adalah kalori (disingkat kal). Satuan kalor yang sering digunakan, terutama untuk menyatakan nilai energi makanan adalah kilokalori (kkal). 1 kkal = 1000 kalori. 1 kkal = 1 Kalori (huruf K besar). Btw, kalori bukan satuan Sistem Internasional. Satuan Sistem Internasional untuk kalor adalah Joule (J).

Berdasarkan penjelasan di atas, tampak bahwa kalor (Q) memiliki kemiripan dengan usaha alias kerja (W). Kalor bisa diartikan sebagai perpindahan energi yang disebabkan oleh adanya perbedaan suhu, sedangkan usaha alias kerja bisa diartikan sebagai perpindahan energi melalui cara-cara mekanis (mekanis tuh berkaitan dengan gerak)…

SISTEM dan LINGKUNGAN

Dalam termodinamika, kita selalu menganalisis proses perpindahan energi dengan mengacu pada suatu sistem. Sistem adalah sebuah benda atau sekumpulan benda yang hendak diteliti… Benda-benda lainnya di alam semesta dinamakan lingkungan… Biasanya sistem dipisahkan dengan lingkungan menggunakan “penyekat/pembatas/pemisah”. Untuk memudahkan pemahamanmu, gurumuda menggunakan ilustrasi saja… tataplah gambar di bawah dengan penuh kelembutan…

suhu-kalor-kerja-sistem-energi-dalam-4

Misalnya kita hendak menyelidiki air yang berada di dalam termos. Air yang ada di dalam termos merupakan sistem, sedangkan udara dan benda-benda lainnya yang berada diluar termos merupakan lingkungan… dinding termos, baik dinding kaca pada bagian dalam termos maupun dinding plastik pada bagian luar termos berfungsi sebagai penyekat alias pemisah…

Terdapat beberapa jenis sistem, yakni sistem terbuka dan sistem tertutup. Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan… Contoh sistem terbuka adalah tumbuh-tumbuhan, hewan dkk… Tumbuh-tumbuhan biasanya menyerap air dan karbondioksida dari lingkungan (terjadi pertukaran materi). Tumbuhan juga membutuhkan kalor yang dipancarkan matahari (terjadi pertukaran energi). Dirimu dan diriku juga termasuk sistem terbuka… Masih banyak contoh lain…

Sebaliknya, sistem tertutup merupakan sistem yang tidak memungkinkan terjadinya pertukaran materi antara sistem tersebut dengan lingkungan. Sistem tertutup dikatakan terisolasi jika tidak adanya kemungkinan terjadi pertukaran energi antara sistem dengan lingkungan. Sistem tertutup dikatakan tidak terisolasi jika bisa terjadi pertukaran energi antara sistem dengan lingkungan… Contoh sistem tertutup yang terisolasi adalah termos air panas. Dinding bagian dalam dari termos air panas biasanya terbuat dari bahan isolator (untuk kasus ini, isolator = bahan yang tidak menghantarkan panas). Btw, dalam kenyataannya memang banyak sistem terisolasi buatan yang tidak sangat ideal. Minimal ada energi yang berpindah keluar, tapi jumlahnya sangat kecil.

ENERGI DALAM (U)

Energi dalam merupakan salah satu konsep paling penting dalam termodinamika. Kita bisa mendefinisikan energi dalam dengan mengacu pada teori kinetik. Teori kinetik mengatakan bahwa setiap zat terdiri dari atom atau molekul, di mana atom atau molekul tersebut bergerak terus menerus secara sembarangan… Ketika bergerak, atom atau molekul pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK). Kita bisa mengatakan bahwa energi dalam merupakan jumlah seluruh energi kinetik atom atau molekul, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara atom atau molekul…


Tidak ada komentar:

Posting Komentar